de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Worst-Case Bounds for Gaussian Process Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84205

Seeger,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kakade, S., Seeger, M., & Foster, D. (2006). Worst-Case Bounds for Gaussian Process Models. Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference, 619-626.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D1F3-B
Zusammenfassung
We present a competitive analysis of some non-parametric Bayesian algorithms in a worst-case online learning setting, where no probabilistic assumptions about the generation of the data are made. We consider models which use a Gaussian process prior (over the space of all functions) and provide bounds on the regret (under the log loss) for commonly used non-parametric Bayesian algorithms - including Gaussian regression and logistic regression - which show how these algorithms can perform favorably under rather general conditions. These bounds explicitly handle the infinite dimensionality of these non-parametric classes in a natural way. We also make formal connections to the minimax and emphminimum description length (MDL) framework. Here, we show precisely how Bayesian Gaussian regression is a minimax strategy.