de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Maximum Margin Semi-Supervised Learning for Structured Variables

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83782

Altun,  Y
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Altun, Y., McAllester, D., & Belkin, M. (2006). Maximum Margin Semi-Supervised Learning for Structured Variables. Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference, 33-40.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D1E7-7
Abstract
Many real-world classification problems involve the prediction of multiple inter-dependent variables forming some structural dependency. Recent progress in machine learning has mainly focused on supervised classification of such structured variables. In this paper, we investigate structured classification in a semi-supervised setting. We present a discriminative approach that utilizes the intrinsic geometry of input patterns revealed by unlabeled data points and we derive a maximum-margin formulation of semi-supervised learning for structured variables. Unlike transductive algorithms, our formulation naturally extends to new test points.