de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Response Modeling with Support Vector Machines

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84217

Shin,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shin, H. (2006). Response Modeling with Support Vector Machines. Expert Systems with Applications, 30(4), 746-760. doi:10.1016/j.eswa.2005.07.037.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D1D7-B
Zusammenfassung
Support Vector Machine (SVM) employs Structural Risk minimization (SRM) principle to generalize better than conventional machine learning methods employing the traditional Empirical Risk Minimization (ERM) principle. When applying SVM to response modeling in direct marketing,h owever,one has to deal with the practical difficulties: large training data,class imbalance and binary SVM output. This paper proposes ways to alleviate or solve the addressed difficulties through informative sampling,u se of different costs for different classes, and use of distance to decision boundary. This paper also provides various evaluation measures for response models in terms of accuracies,lift chart analysis and computational efficiency.