de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Recognising novel deforming objects

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83861

Chuang,  L
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84291

Vuong,  QC
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84258

Thornton,  IM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chuang, L., Vuong, Q., Thornton, I., & Bülthoff, H. (2006). Recognising novel deforming objects. Visual Cognition, 14(1), 85-88. doi:10.1080/13506280600627756.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D1D5-F
Zusammenfassung
Current theories of visual object recognition tend to focus on static properties, particularly shape. Nonetheless, visual perception is a dynamic experience–as a result of active observers or moving objects. Here, we investigate whether dynamic information can influence visual object-learning. Three learning experiments were conducted that required participants to learn and subsequently recognize different non-rigid objects that deformed over time. Consistent with previous studies of rigid depth-rotation, our results indicate that human observers do represent object-motion. Furthermore, our data suggest that dynamic information could compensate for when static cues are less reliable, for example, as a result of viewpoint variation.