de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Sampling for non-conjugate infinite latent feature models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83939

Görür,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84156

Rasmussen,  CE
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Görür, D., & Rasmussen, C. (2006). Sampling for non-conjugate infinite latent feature models. Talk presented at 8th Valencia International Meeting on Bayesian Statistics (ISBA 2006). Benidorm, Spain.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D1AB-F
Zusammenfassung
Latent variable models are powerful tools to model the underlying structure in data. Infinite latent variable models can be defined using Bayesian nonparametrics. Dirichlet process (DP) models constitute an example of infinite latent class models in which each object is assumed to belong to one of the, mutually exclusive, infinitely many classes. Recently, the Indian buffet process (IBP) has been defined as an extension of the DP. IBP is a distribution over sparse binary matrices with infinitely many columns which can be used as a distribution for non-exclusive features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described, however requiring conjugacy restricts the use of IBP. We describe an MCMC algorithm for non-conjugate IBP models. Modelling the choice behaviour is an important topic in psychology, economics and related fields. Elimination by Aspects (EBA) is a choice model that assumes each alternative has latent features with associated weights that lead to the observed choice outcomes. We formulate a non-parametric version of EBA by using IBP as the prior over the latent binary features. We infer the features of objects that lead to the choice data by using our sampling scheme for inference.