de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Deterministic annealing for semi-supervised kernel machines

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83855

Chapelle,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sindhwani, V., Keerthi, S., & Chapelle, O. (2006). Deterministic annealing for semi-supervised kernel machines. Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), 841-848.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D135-A
Abstract
An intuitive approach to utilizing unlabeled data in kernel-based classification algorithms is to simply treat the unknown labels as additional optimization variables. For margin-based loss functions, one can view this approach as attempting to learn low-density separators. However, this is a hard optimization problem to solve in typical semi-supervised settings where unlabeled data is abundant. The popular Transductive SVM algorithm is a label-switching-retraining procedure that is known to be susceptible to local minima. In this paper, we present a global optimization framework for semi-supervised Kernel machines where an easier problem is parametrically deformed to the original hard problem and minimizers are smoothly tracked. Our approach is motivated from deterministic annealing techniques and involves a sequence of convex optimization problems that are exactly and efficiently solved. We present empirical results on several synthetic and real world datasets that demonstrate the effectiveness of our approach.