de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Quantitative aspects of the microvascular system in macaque visual cortex

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84304

Weber,  B
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84008

Keller,  AL
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Weber, B., Keller, A., Groso A, Stampanoni, M., & Logothetis, N. (2006). Quantitative aspects of the microvascular system in macaque visual cortex. Poster presented at 5th Forum of European Neuroscience (FENS 2006), Wien, Austria.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D107-1
Abstract
The basic principle of the most frequently used functional neuroimaging methods is the brain’s local dynamic regulation of blood flow. For a correct interpretation of neuroimaging results the structural and functional neurovascular coupling underlying this regulation must be well understood. Here we report quantitative anatomical data of the microvasculature in the macaque visual cortex. Formalin-fixed frozen sections of 4 animals (M. mulatta) were processed for double fluorescence immunohistochemistry. Sections were incubated with anti-collagen type IV and DAPI to stain for vessels and cell nuclei. In one additional animal, the anti-collagen procedure was combined with cytochrome oxidase staining in V1. The length density (LD), surface density (SD), volume fraction (VF) and diameter (D) of the vessels were stereologically determined. Furthermore, synchrotron-based computed tomographies (SRCT) of formalin-fixed and barium sulfate-perfused brain samples from another 2 animals were used to corroborate the histological results. In V1, the vascular density was highest in layer IVc- (LD 674.7 mm/mm3, SD 15.2 mm2/mm3, VF 2.6 , D 7.2 microns) and lowest in layer I (LD 461.5 mm/mm3, SD 10.9 mm2/mm3, VF 1.9 , D 7.5 microns). In all extrastriate visual areas analyzed (V2, V3, V4, V5), the vascular density was generally lower, and the difference between layer IV and the remaining layers was less prominent when compared to V1. These density values were similar compared to the ones tomographically obtained from SRCT. The vascular density in cytochrome oxidase rich blobs in V1 was 14 higher as compared to the interblob region. In summary, V1 is different from all extrastriate areas analyzed with respect to the laminar vessel distribution and overall vascular density. Differences between extrastriate areas were negligible. The overall vascular volume fraction in visual cortex derived from immunostaining was approximately 2 , a value that was well reproduced by the SRCT.