de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Categorization of natural scenes: local vs. global information

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84284

Vogel,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84420

Schwaninger,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vogel, J., Schwaninger, A., Wallraven, C., & Bülthoff, H. (2006). Categorization of natural scenes: local vs. global information. In 3rd Symposium on Applied Perception in Graphics and Visualization (APGV 2006) (pp. 33-40). New York, NY, USA: ACM Press.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D0EB-7
Zusammenfassung
Understanding the robustness and rapidness of human scene categorization has been a focus of investigation in the cognitive sciences over the last decades. At the same time, progress in the area of image understanding has prompted computer vision researchers to design computational systems that are capable of automatic scene categorization. Despite these efforts, a framework describing the processes underlying human scene categorization that would enable efficient computer vision systems is still missing. In this study, we present both psychophysical and computational experiments that aim to make a further step in this direction by investigating the processing of local and global information in scene categorization. In a set of human experiments, categorization performance is tested when only local or only global image information is present. Our results suggest that humans rely on local, region-based information as much as on global, configural information. In addition, humans seem to integrate both types of information for intact scene categorization. In a set of computational experiments, human performance is compared to two state-of-the-art computer vision approaches that model either local or global information.