de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Sequence Tagger

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83782

Altun,  Y
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ciaramita, M., & Altun, Y. (2006). Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Sequence Tagger. In 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006) (pp. 594-602). Stroudsburg, PA, USA: Association for Computational Linguistics.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D0E9-B
Zusammenfassung
In this paper we approach word sense disambiguation and information extraction as a unified tagging problem. The task consists of annotating text with the tagset defined by the 41 Wordnet supersense classes for nouns and verbs. Since the tagset is directly related to Wordnet synsets, the tagger returns partial word sense disambiguation. Furthermore, since the noun tags include the standard named entity detection classes – person, location, organization, time, etc. – the tagger, as a by-product, returns extended named entity information. We cast the problem of supersense tagging as a sequential labeling task and investigate it empirically with a discriminatively-trained Hidden Markov Model. Experimental evaluation on the main sense-annotated datasets available, i.e., Semcor and Senseval, shows considerable improvements over the best known “first-sense” baseline.