de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Large Scale Transductive SVMs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84226

Sinz,  F
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84311

Weston,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Large Scale Transductive SVMs. Journal of Machine Learning Research, 7, 1687-1712. Retrieved from http://jmlr.csail.mit.edu/papers/volume7/collobert06a/collobert06a.pdf.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D08D-E
Zusammenfassung
We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.