de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Integrating Structured Biological data by Kernel Maximum Mean Discrepancy

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84155

Rasch,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Kriegel H-P, Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84953

Smola,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Borgwardt, K., Gretton, A., Rasch, M., Kriegel H-P, Schölkopf, B., & Smola, A. (2006). Integrating Structured Biological data by Kernel Maximum Mean Discrepancy. Bioinformatics, 22(4: ISMB 2006 Conference Proceedings), e49-e57. doi:10.1093/bioinformatics/btl242.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D08B-1
Abstract
Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments.