Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Time-Dependent Demixing of Task-Relevant EEG Signals

MPG-Autoren
/persons/resource/persons83968

Hill,  NJ
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83909

Farquhar,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84035

Lal,  TN
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hill, N., Farquhar, J., Lal, T., & Schölkopf, B. (2006). Time-Dependent Demixing of Task-Relevant EEG Signals. In G. Müller-Putz (Ed.), 3rd International Brain-Computer Interface Workshop and Training Course 2006 (pp. 20-21). Graz, Austria: Verlag der Technischen Universität Graz.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D069-D
Zusammenfassung
Given a spatial filtering algorithm that has allowed us to identify task-relevant EEG sources, we present a simple approach
for monitoring the activity of these sources while remaining relatively robust to changes in other (task-irrelevant) brain activity. The idea is to keep spatial *patterns* fixed rather than spatial filters, when transferring from
training to test sessions or from one time window to another. We show that a fixed spatial pattern (FSP)
approach, using a moving-window estimate of signal covariances, can be more robust to non-stationarity than a fixed spatial filter (FSF) approach.