de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83948

Grosse-Wentrup,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Breun, P., Grosse-Wentrup, M., Utschick, W., & Buss, M. (2006). Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity. Pattern Recognition: 28th DAGM Symposium, 394-403.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D051-1
Zusammenfassung
Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEG data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural sources introduce an error into the obtained source locations. This error can be avoided by reprojecting ICs onto the observation space, but requires the identification of relevant ICs. For Event Related Potentials (ERPs), we identify relevant ICs by estimating their non-Gaussianity. The efficacy of the approach is tested on auditory evoked potentials (AEPs) recorded by MEG. It is shown that ten trials are sufficient for reconstructing all important characteristics of the AEP, and source localization of the reconstructed ERP yields the same focus of activity as the average of 250 trials.