Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Conference Paper

Efficient Large Scale Linear Programming Support Vector Machines


Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Sra, S. (2006). Efficient Large Scale Linear Programming Support Vector Machines. Machine Learning: ECML 2006, 767-774.

Cite as:
This paper presents a decomposition method for efficiently constructing ℓ1-norm Support Vector Machines (SVMs). The decomposition algorithm introduced in this paper possesses many desirable properties. For example, it is provably convergent, scales well to large datasets, is easy to implement, and can be extended to handle support vector regression and other SVM variants. We demonstrate the efficiency of our algorithm by training on (dense) synthetic datasets of sizes up to 20 million points (in ℝ32). The results show our algorithm to be several orders of magnitude faster than a previously published method for the same task. We also present experimental results on real data sets—our method is seen to be not only very fast, but also highly competitive against the leading SVM implementations.