de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Policy Gradient Methods for Robotics

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Peters, J. (2006). Policy Gradient Methods for Robotics. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2219-2225). Los Alamitos, CA, USA: IEEE Computer Society.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-CFD3-6
Abstract
Abstract—The aquisition and improvement of motor skills and control policies for robotics from trial and error is of essential importance if robots should ever leave precisely pre-structured environments. However, to date only few existing reinforcement learning methods have been scaled into the domains of highdimensional robots such as manipulator, legged or humanoid robots. Policy gradient methods remain one of the few exceptions and have found a variety of applications. Nevertheless, the application of such methods is not without peril if done in an uninformed manner. In this paper, we give an overview on learning with policy gradient methods for robotics with a strong focus on recent advances in the field. We outline previous applications to robotics and show how the most recently developed methods can significantly improve learning performance. Finally, we evaluate our most promising algorithm in the application of hitting a baseball with an anthropomorphic arm.