de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spatially localized intermolecular zero-quantum coherence spectroscopy for in vivo applications

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83793

Balla,  DZ
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balla, D., Melkus, G., & Faber, C. (2006). Spatially localized intermolecular zero-quantum coherence spectroscopy for in vivo applications. Magnetic Resonance in Medicine, 56(4), 745-753. doi:10.1002/mrm.21007.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CFCB-9
Zusammenfassung
Magnetic resonance spectroscopy (MRS) techniques that use the distant dipolar field (DDF) to locally refocus inhomogeneous line-broadening promise improved spectral resolution in spatially varying fields. We investigated three possible implementations of localized DDF spectroscopy. Theoretical analysis and phantom experiments at 17.6 T showed that only localization immediately prior to acquisition provides sufficient spatial selectivity and sensitivity for in vivo applications. Spectra from an (8 mm)3 voxel of the rat brain were acquired in 25 min, and three major metabolites were resolved. In a tumor mouse model, DDF spectra with well-resolved lines can be obtained from significantly larger voxels compared to conventional localized spectroscopy. From an inhomogeneous voxel, improved spectral resolution can be obtained with DDF techniques when a sufficient number of increments are sampled along the second spectral dimension. With fewer increments, measurement time is significantly shortened, and DDF techniques can provide higher signal-to-noise ratio (SNR) efficiency.