de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Discrete Regularization

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84330

Zhou,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhou, D., & Schölkopf, B. (2006). Discrete Regularization. In Semi-supervised Learning (pp. 237-250). Cambridge, MA, USA: MIT Press.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-CF91-9
Abstract
Many real-world machine learning problems are situated on finite discrete sets, including dimensionality reduction, clustering, and transductive inference. A variety of approaches for learning from finite sets has been proposed from different motivations and for different problems. In most of those approaches, a finite set is modeled as a graph, in which the edges encode pairwise relationships among the objects in the set. Consequently many concepts and methods from graph theory are adopted. In particular, the graph Laplacian is widely used. In this chapter we present a systemic framework for learning from a finite set represented as a graph. We develop discrete analogues of a number of differential operators, and then construct a discrete analogue of classical regularization theory based on those discrete differential operators. The graph Laplacian based approaches are special cases of this general discrete regularization framework. An important thing implied in this framework is that we have a wide choices of regularization on graph in addition to the widely-used graph Laplacian based one.