de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Exploring the causal order of binary variables via exponential hierarchies of Markov kernels

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84243

Sun,  X
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, X., & Janzing, D. (2007). Exploring the causal order of binary variables via exponential hierarchies of Markov kernels. Proceedings of the 15th European Symposium on Artificial Neural Networks (ESANN 2007), 465-470.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CE1D-4
Zusammenfassung
We propose a new algorithm for estimating the causal structure that underlies the observed dependence among n (ngt;=4) binary variables X_1,...,X_n. Our inference principle states that the factorization of the joint probability into conditional probabilities for X_j given X_1,...,X_j-1 often leads to simpler terms if the order of variables is compatible with the directed acyclic graph representing the causal structure. We study joint measures of OR/AND gates and show that the complexity of the conditional probabilities (the so-called Markov kernels), defined by a hierarchy of exponential models, depends on the order of the variables. Some toy and real-data experiments support our inference rule.