Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

In vivo brain connectivity: optimization of manganese enhanced MRI for neuronal tract tracing

MPG-Autoren
/persons/resource/persons84751

Canals,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83807

Beyerlein,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84008

Keller,  AL
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Canals, S., Beyerlein, M., Keller, A., Murayama, Y., & Logothetis, N. (2007). In vivo brain connectivity: optimization of manganese enhanced MRI for neuronal tract tracing. Poster presented at 2007 Joint Annual Meeting ISMRM-ESMRMB, Berlin, Germany.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-CDD9-6
Zusammenfassung
One of the main problems in systems biology is to obtain information between interconnected groups of neurons in highly distributed networks. The recently introduced technique of manganese (Mn2+) enhanced MRI (MEMRI) to study neuronal connectivity in vivo opens the possibility to these studies. However, several drawbacks exist that challenge the applicability of this technique. High Mn2+ concentrations produce cytotoxic effects that can perturb the circuits under study. On the other hand, the MR signal is proportional to the Mn2+ concentration in tissue and thus, significant amounts of Mn2+ are required to
produce detectable contrast and reliable connectivity maps.Here we attempt to optimize the MEMRI technique by preventing toxicity and improving the quality and extension of the obtained connectivity maps.