de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Cluster Identification in Nearest-Neighbor Graphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84070

Maier,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons76237

von Luxburg,  U
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maier, M., Hein, M., & von Luxburg, U.(2007). Cluster Identification in Nearest-Neighbor Graphs (163).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CDCB-6
Zusammenfassung
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identifiedlsquo;lsquo;: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimallsquo;lsquo; values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.