de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Transductive Support Vector Machines for Structured Variables

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84331

Zien,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zien, A., Brefeld, U., & Scheffer, T. (2007). Transductive Support Vector Machines for Structured Variables. Talk presented at International Conference on Machine Learning (ICML 2007). Corvallis, OR, USA.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CDA5-7
Zusammenfassung
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.