de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Weighted Substructure Mining for Image Analysis

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84113

Nowozin,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84265

Tsuda,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83791

BakIr,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Nowozin, S., Tsuda, K., Uno T, Kudo, T., & BakIr, G. (2007). Weighted Substructure Mining for Image Analysis. Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 1-8.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-CD71-C
Abstract
In web-related applications of image categorization, it is desirable to derive an interpretable classification rule with high accuracy. Using the bag-of-words representation and the linear support vector machine, one can partly fulfill the goal, but the accuracy of linear classifiers is not high and the obtained features are not informative for users. We propose to combine item set mining and large margin classifiers to select features from the power set of all visual words. Our resulting classification rule is easier to browse and simpler to understand, because each feature has richer information. As a next step, each image is represented as a graph where nodes correspond to local image features and edges encode geometric relations between features. Combining graph mining and boosting, we can obtain a classification rule based on subgraph features that contain more information than the set features. We evaluate our algorithm in a web-retrieval ranking task where the goal is to reject outliers from a set of images returned for a keyword query. Furthermore, it is evaluated on the supervised classification tasks with the challenging VOC2005 data set. Our approach yields excellent accuracy in the unsupervised ranking task compared to a recently proposed probabilistic model and competitive results in the supervised classification task.