de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Kernel-Based Causal Learning Algorithm

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84243

Sun,  X
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83923

Fukumizu,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, X., Janzing, D., Schölkopf, B., & Fukumizu, K. (2007). A Kernel-Based Causal Learning Algorithm. Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), 855-862.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CD57-8
Zusammenfassung
We describe a causal learning method, which employs measuring the strength of statistical dependences in terms of the Hilbert-Schmidt norm of kernel-based cross-covariance operators. Following the line of the common faithfulness assumption of constraint-based causal learning, our approach assumes that a variable Z is likely to be a common effect of X and Y, if conditioning on Z increases the dependence between X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges by the majority principle. In most experiments with known causal structures, our method provided plausible results and outperformed the conventional constraint-based PC algorithm.