de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

The Effect of Gaze Direction and Field-Of-View on Speed Constancy

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84148

Pretto,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84281

Vidal,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83857

Chatziastros,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Pretto, P., Vidal, M., & Chatziastros, A. (2007). The Effect of Gaze Direction and Field-Of-View on Speed Constancy. Poster presented at 10th Tübinger Wahrnehmungskonferenz (TWK 2007), Tübingen, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-CD21-2
Abstract
During linear self-motion at constant speed, the retinal speeds of stationary objects vary as a function of their declination angle (the angle between the line of sight and the horizontal plane). Nevertheless, when we move in our environment, we do not feel that different places move at different speeds: a compensation mechanism is thought to mediate between angular velocity and perceived linear speed so that velocity constancy is achieved. In a recent study [1] it has been shown that the perceived speed is altered when driving with a reduced fieldof- view (FOV). The explanation proposed in that study leads us to the hypothesis that, when moving at constant speed, humans might not be able to compensate for the different velocity signals coming from various declination angles when only a limited portion of the visual field is visible. Here we tested this hypothesis using a Virtual Reality (VR) setup that provides a 230×125 (H×V) FOV. We measured the visual perceived speed at eye-height (1.7m) while simulating fast walking speeds on a virtual open field. We manipulated the FOV (full field vs. limited field corresponding to an aperture of 40×6) and the gaze declination angle (12, 20 and 28 degrees), corresponding to positions on the plane located at a distance of 8, 4.7, and 3.2 m, respectively. We used a two alternative forced choice (2AFC) with constant stimuli method in a 2×3 within subjects design. We tested eight different speeds ranging from 0.67 to 6 m/s. The reference stimulus appeared always in the intermediate declination angle at the speed of 2 m/s. A fixation cross appeared at the desired declination angle 500 ms before each stimulus. At every trial, subjects had to select which of the two presented stimuli indicated a faster linear forward speed. The results of four observers show that when looking with a different declination angle in the test, the perceived speed appeared either higher or lower than the reference speed. This effect was accentuated in the limited FOV condition, suggesting that limiting the FOV impairs the compensation mechanism. Interestingly, while two observers could not fully compensate for the perceived retinal speed even within a full FOV condition, the other two showed a reliable over-compensation independently of the FOV. This indicates that a veridical speed estimation cannot be achieved in VR and with limited FOV and that speed estimation is not independent of gaze direction.