Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

MPG-Autoren
/persons/resource/persons84381

Deisenroth,  MP
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ECC-2007- DEisenroth.pdf
(beliebiger Volltext), 320KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deisenroth, M., Weissel, F., Ohtsuka, T., & Hanebeck, U. (2007). Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces. In 2007 European Control Conference (ECC) (pp. 3664-3671). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-CCC1-F
Zusammenfassung
A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means o
f a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller.