de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Kernel Approach to Comparing Distributions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84155

Rasch,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84953

Smola,  AJ
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2007). A Kernel Approach to Comparing Distributions. In Twenty-Second AAAI Conference on Artificial Intelligence (IAAI-07) (pp. 1637-1641). Menlo Park, CA, USA: AAAI Press.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CCB1-4
Zusammenfassung
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a Reproducing Kernel Hilbert Space. We apply this technique to construct a two-sample test, which is used for determining whether two sets of observations arise from the same distribution. We use this test in attribute matching for databases using the Hungarian marriage method, where it performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.