English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Signal reliability modulates auditory-tactile integration for event counting

MPS-Authors
/persons/resource/persons83831

Bresciani,  J-P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83906

Ernst,  MO
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bresciani, J.-P., & Ernst, M. (2007). Signal reliability modulates auditory-tactile integration for event counting. NeuroReport, 18(11), 1157-1161. doi:10.1097/WNR.0b013e3281ace0ca.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-CCAB-3
Abstract
Sequences of auditory beeps and tactile taps were simultaneously presented and participants were instructed to focus on one of these modalities and to ignore the other. We tested whether (i) the two sensory channels bias one another and (ii) the interaction depends on the relative reliability of the channels. Audition biased tactile perception and touch biased auditory perception. Lowering the reliability of the auditory channel (i.e. the intensity of the beeps) decreased the effect of audition on touch and increased the effect of touch on audition. These results show that simultaneous auditory and tactile stimuli tend to be automatically integrated in a reliability-dependent manner.