de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Collaborative Filtering via Ensembles of Matrix Factorizations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84321

Wu,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wu, M. (2007). Collaborative Filtering via Ensembles of Matrix Factorizations. Proceedings of KDD Cup and Workshop 2007, 43-47.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CC3D-E
Zusammenfassung
We present a Matrix Factorization(MF) based approach for the Netflix Prize competition. Currently MF based algorithms are popular and have proved successful for collaborative filtering tasks. For the Netflix Prize competition, we adopt three different types of MF algorithms: regularized MF, maximum margin MF and non-negative MF. Furthermore, for each MF algorithm, instead of selecting the optimal parameters, we combine the results obtained with several parameters. With this method, we achieve a performance that is more than 6 better than the Netflixamp;lsquo;s own system.