de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Correcting Sample Selection Bias by Unlabeled Data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83983

Huang,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84953

Smola,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huang, J., Smola, A., Gretton, A., Borgwardt, K., & Schölkopf, B. (2007). Correcting Sample Selection Bias by Unlabeled Data. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, 601-608.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CBDB-0
Zusammenfassung
We consider the scenario where training and test data are drawn from different distributions, commonly referred to as sample selection bias. Most algorithms for this setting try to first recover sampling distributions and then make appropriate corrections based on the distribution estimate. We present a nonparametric method which directly produces resampling weights without distribution estimation. Our method works by matching distributions between training and testing sets in feature space. Experimental results demonstrate that our method works well in practice.