日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Mining complex genotypic features for predicting HIV-1 drug resistance

MPS-Authors
/persons/resource/persons84183

Saigo,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84265

Tsuda,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Saigo, H., Uno, T., & Tsuda, K. (2007). Mining complex genotypic features for predicting HIV-1 drug resistance. Bioinformatics, 23(18), 2455-2462. doi:10.1093/bioinformatics/btm353.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-CBBB-7
要旨
Human immunodeficiency virus type 1 (HIV-1) evolves in human body,
and its exposure to a drug often causes mutations that enhance
the resistance against the drug.
To design an effective pharmacotherapy for an individual patient,
it is important to accurately predict the drug resistance
based on genotype data.
Notably, the resistance is not just
the simple sum of the effects of all mutations.
Structural biological studies suggest that
the association of mutations is crucial:
Even if mutations A or B alone do not affect the resistance,
a significant change might happen
when the two mutations occur together.
Linear regression methods cannot take the associations into account,
while decision tree methods can reveal only limited associations.
Kernel methods and neural networks implicitly use all possible
associations for prediction, but cannot select salient associations
explicitly.
Our method, itemset boosting, performs linear regression
in the complete space of power sets of mutations.
It implements a forward feature selection procedure where,
in each iteration, one mutation combination is
found by an efficient branch-and-bound search.
This method uses all possible combinations,
and salient associations are explicitly shown.
In experiments, our method worked particularly well for predicting the
resistance of nucleotide reverse transcriptase inhibitors
(NRTIs). Furthermore, it successfully recovered many mutation
associations known in biological literature.