de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Bayesian Estimators for Robins-Ritov’s Problem

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83954

Harmeling,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Harmeling, S.(2007). Bayesian Estimators for Robins-Ritov’s Problem (EDI-INF-RR-1189).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CB97-8
Zusammenfassung
Bayesian or likelihood-based approaches to data analysis became very popular in the 64257;eld of Machine Learning. However, there exist theoretical results which question the general applicability of such approaches; among those a result by Robins and Ritov which introduce a speci64257;c example for which they prove that a likelihood-based estimator will fail (i.e. it does for certain cases not converge to a true parameter estimate, even given in64257;nite data). In this paper we consider various approaches to formulate likelihood-based estimators in this example, basically by considering various extensions of the presumed generative model of the data. We can derive estimators which are very similar to the classical Horvitz-Thompson and which also account for a priori knowledge of an observation probability function.