de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Recording Chronically from the same Neurons in Awake, Behaving Primates

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84260

Tolias,  AS
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83896

Ecker,  AS
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83970

Siapas AG, Hoenselaar,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tolias, A., Ecker, A., Siapas AG, Hoenselaar, A., Keliris, G., & Logothetis, N. (2007). Recording Chronically from the same Neurons in Awake, Behaving Primates. Journal of Neurophysiology, 98(6), 3780-3790. doi:10.1152/jn.00260.2007.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CAED-0
Zusammenfassung
Understanding the mechanisms of learning requires characterizing how the response properties of individual neurons and interactions across populations of neurons change over time. In order to study learning in-vivo, we need the ability to track an electrophysiological signature that uniquely identifies each recorded neuron for extended periods of time. We have identified such an extracellular signature using a statistical framework which allows quantification of the accuracy by which stable neurons can be identified across successive recording sessions. Our statistical framework uses spike waveform information recorded on a tetrode’s four channels in order to define a measure of similarity between neurons recorded across time. We use this framework to quantitatively demonstrate for the first time the ability to record from the same neurons across multiple consecutive days and weeks. The chronic recording techniques and methods of analyses we report can be used to characterize the changes in brain circuits du e to learning.