English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Object features used by humans and monkeys to identify rotated shapes

MPS-Authors
/persons/resource/persons84110

Nielsen,  KJ
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84154

Rainer,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nielsen, K., Logothetis, N., & Rainer, G. (2008). Object features used by humans and monkeys to identify rotated shapes. Journal of Vision, 8(2): 9, pp. 1-15. doi:10.1167/8.2.9.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-CA6B-5
Abstract
Humans and rhesus monkeys can identify shapes that have been rotated in the picture plane. Recognition of rotated shapes can be as efficient as recognition of upright shapes. Here we investigate whether subjects showing view-invariant performance use the same object features to identify upright and rotated versions of a shape. We find marked differences between humans and monkeys. While humans tend to use the same features independent of shape orientation, monkeys use unique features for each orientation. Humans are able to generalize to a greater degree across orientation changes than rhesus monkey observers, who tend to relearn separate problems at each orientation rather than flexibly apply previously learned knowledge to novel problems.