de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protein Functional Class Prediction With a Combined Graph

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84217

Shin,  HH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84265

Tsuda,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Shin, H., Tsuda, K., & Schölkopf, B. (2008). Protein Functional Class Prediction With a Combined Graph. Expert Systems with Applications, 36(2), 3284-3292. doi:10.1016/j.eswa.2008.01.006.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-CA2D-2
Abstract
In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein–protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. However, since different graphs contain partly independent and partly complementary information about the problem at hand, one can enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to network output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The proposed method performs significantly better than the same algorithm trained on any singl e graph.