Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning Inverse Dynamics: A Comparison

MPG-Autoren
/persons/resource/persons84108

Nguyen-Tuong,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84205

Seeger,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ESANN-2008-Nguyen-Tuong.pdf
(beliebiger Volltext), 671KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nguyen-Tuong, D., Peters, J., Seeger, M., & Schölkopf, B. (2008). Learning Inverse Dynamics: A Comparison. In M. Verleysen (Ed.), Advances in computational intelligence and learning: 16th European Symposium on Artificial Neural Networks (pp. 13-18). Evere, Belgium: d-side.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C9DF-7
Zusammenfassung
While it is well-known that model can enhance the control performance in terms of precision or energy efficiency, the practical application
has often been limited by the complexities of manually obtaining
sufficiently accurate models. In the past, learning has proven a viable alternative
to using a combination of rigid-body dynamics and handcrafted
approximations of nonlinearities. However, a major open question is what
nonparametric learning method is suited best for learning dynamics? Traditionally,
locally weighted projection regression (LWPR), has been the
standard method as it is capable of online, real-time learning for very complex
robots. However, while LWPR has had significant impact on learning
in robotics, alternative nonparametric regression methods such as support
vector regression (SVR) and Gaussian processes regression (GPR) offer interesting alternatives with fewer open parameters and potentially higher
accuracy. In this paper, we evaluate these three alternatives for model
learning. Our comparison consists out of the evaluation of learning quality
for each regression method using original data from SARCOS robot
arm, as well as the robot tracking performance employing learned models.
The results show that GPR and SVR achieve a superior learning precision
and can be applied for real-time control obtaining higher accuracy. However,
for the online learning LWPR presents the better method due to its
lower computational requirements.