de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Generalization and Similarity in Exemplar Models of Categorization: Insights from Machine Learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83992

Jäkel,  F
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84314

Wichmann,  FA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jäkel, F., Schölkopf, B., & Wichmann, F. (2008). Generalization and Similarity in Exemplar Models of Categorization: Insights from Machine Learning. Psychonomic Bulletin and Review, 15(2), 256-271. doi:10.3758/PBR.15.2.256.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C9C1-7
Zusammenfassung
Exemplar theories of categorization depend on similarity for explaining subjects’ ability to generalize to new stimuli. A major criticism of exemplar theories concerns their lack of abstraction mechanisms and thus, seemingly, generalization ability. Here, we use insights from machine learning to demonstrate that exemplar models can actually generalize very well. Kernel methods in machine learning are akin to exemplar models and very successful in real-world applications. Their generalization performance depends crucially on the chosen similaritymeasure. While similarity plays an important role in describing generalization behavior it is not the only factor that controls generalization performance. In machine learning, kernel methods are often combined with regularization techniques to ensure good generalization. These same techniques are easily incorporated in exemplar models. We show that the Generalized Context Model (Nosofsky, 1986) and ALCOVE (Kruschke, 1992) are closely related to a statistical model called kernel logistic regression. We argue that generalization is central to the enterprise of understanding categorization behavior and suggest how insights from machine learning can offer some guidance. Keywords: kernel, similarity, regularization, generalization, categorization.