de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Data-driven efficient score tests for deconvolution hypotheses

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84039

Langovoy,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Langovoy, M. (2008). Data-driven efficient score tests for deconvolution hypotheses. Inverse Problems, 24(2), 1-17. doi:10.1088/0266-5611/24/2/025028.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C9BB-8
Zusammenfassung
We consider testing statistical hypotheses about densities of signals in deconvolution models. A new approach to this problem is proposed. We constructed score tests for the deconvolution density testing with the known noise density and efficient score tests for the case of unknown density. The tests are incorporated with model selection rules to choose reasonable model dimensions automatically by the data. Consistency of the tests is proved.