de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Multi-resolution classification analysis of ocular dominance columns obtained from human V1 at 7 Tesla: mechanisms underlying decoding signals

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83851

Chaimow,  D
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84151

Raddatz,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84218

Shmuel,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chaimow, D., Logothetis, N., Raddatz, G., Shmuel, A., Ugurbil, K., & Yacoub, E. (2008). Multi-resolution classification analysis of ocular dominance columns obtained from human V1 at 7 Tesla: mechanisms underlying decoding signals. Poster presented at 16th Scientific Meeting and Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2008), Toronto, Canada.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C99B-1
Zusammenfassung
Recent studies have demonstrated that classification algorithms applied to human fMRI data can decode information segregated in cortical columns, although the voxel-size was large relative to the width of columns. The mechanism by which low-resolution imaging decodes information represented at higher resolution is not clear. We show that using GE-fMRI signals, the mechanism underlying the decoding signals involves contributions from both gray matter and macroscopic blood vessels. We hypothesize that draining regions biased towards columns with preference to one eye underlie the specificity of vessels. Decoding at high-resolution is superior to low-resolution when applied to data from small cortical volumes.