Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Multi-resolution classification analysis of ocular dominance columns obtained from human V1 at 7 Tesla: mechanisms underlying decoding signals

MPG-Autoren
/persons/resource/persons83851

Chaimow,  D
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84151

Raddatz,  G
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84218

Shmuel,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chaimow, D., Logothetis, N., Raddatz, G., Shmuel, A., Ugurbil, K., & Yacoub, E. (2008). Multi-resolution classification analysis of ocular dominance columns obtained from human V1 at 7 Tesla: mechanisms underlying decoding signals. In 16th Scientific Meeting and Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM 2008) (pp. 27).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C99B-1
Zusammenfassung
Recent studies have demonstrated that classification algorithms applied to human fMRI data can decode information segregated in cortical columns, although the voxel-size was large relative to the width of columns. The mechanism by which low-resolution imaging decodes information represented at higher resolution is not clear. We show that using GE-fMRI signals, the mechanism underlying the decoding signals involves contributions from both gray matter and macroscopic blood vessels. We hypothesize that draining regions biased towards columns with preference to one eye underlie the specificity of
vessels. Decoding at high-resolution is superior to low-resolution when applied to data from small cortical volumes.