de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Perceptual and Computational Categories in Art

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83870

Cunningham,  DW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83913

Fleming,  R
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wallraven, C., Cunningham, D., & Fleming, R. (2008). Perceptual and Computational Categories in Art. In Computational Aesthetics 2008: Eurographics Workshop on Computational Aesthetics (CAe 2008) (pp. 131-138). Aire-la-Ville, Switzerland: Eurographics Association.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C907-B
Zusammenfassung
The categorization of art (paintings, literature) into distinct styles such as expressionism, or surrealism has had a profound influence on how art is presented, marketed, analyzed, and historicized. Here, we present results from several perceptual experiments with the goal of determining whether such categories also have a perceptual foundation. Following experimental methods from perceptual psychology on category formation, naive, non-expert participants were asked to sort printouts of artworks from different art periods into categories. Converting these data into similarity data and running a multi-dimensional scaling (MDS) analysis, we found distinct perceptual categories which did in some cases correspond to canonical art periods. Initial results from a comparison with several computational algorithms for image analysis and scene categorization are also reported.