de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Computed Torque Control with Nonparametric Regression Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84108

Nguyen-Tuong,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84205

Seeger,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nguyen-Tuong, D., Seeger, M., & Peters, J. (2008). Computed Torque Control with Nonparametric Regression Models. Proceedings of the 2008 American Control Conference (ACC 2008), 212-217.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C8F7-8
Zusammenfassung
Computed torque control allows the design of considerably more precise, energy-efficient and compliant controls for robots. However, the major obstacle is the requirement of an accurate model for torque generation, which cannot be obtained in some cases using rigid-body formulations due to unmodeled nonlinearities, such as complex friction or actuator dynamics. In such cases, models approximated from robot data present an appealing alternative. In this paper, we compare two nonparametric regression methods for model approximation, i.e., locally weighted projection regression (LWPR) and Gaussian process regression (GPR). While locally weighted regression was employed for real-time model estimation in learning adaptive control, Gaussian process regression has not been used in control to-date due to high computational requirements. The comparison includes the assessment of model approximation for both regression methods using data originated from SARCOS robot arm, as well as an evaluation of the robot tracking p erformance in computed torque control employing the approximated models. Our results show that GPR can be applied for real-time control achieving higher accuracy. However, for the online learning LWPR is superior by reason of lower computational requirements.