de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Bayesian Color Constancy Revisited

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44483

Gehler,  PV
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gehler, P., Rother C, Blake A, Minka, T., & Sharp, T. (2008). Bayesian Color Constancy Revisited. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 1-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C8F1-3
Zusammenfassung
Computational color constancy is the task of estimating the true reflectances of visible surfaces in an image. In this paper we follow a line of research that assumes uniform illumination of a scene, and that the principal step in estimating reflectances is the estimation of the scene illuminant. We review recent approaches to illuminant estimation, firstly those based on formulae for normalisation of the reflectance distribution in an image — so-called grey-world algorithms, and those based on a Bayesian formulation of image formation. In evaluating these previous approaches we introduce a new tool in the form of a database of 568 high-quality, indoor and outdoor images, accurately labelled with illuminant, and preserved in their raw form, free of correction or normalisation. This has enabled us to establish several properties experimentally. Firstly automatic selection of grey-world algorithms according to image properties is not nearly so effective as has been thought. Secondly, it is shown that Bayesian illuminant estimation is significantly improved by the improved accuracy of priors for illuminant and reflectance that are obtained from the new dataset.