de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

The role of stereo vision in visual and vestibular cue integration

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83842

Butler,  JS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84978

Smith,  ST
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Butler, J., Bülthoff, H., & Smith, S. (2008). The role of stereo vision in visual and vestibular cue integration. Talk presented at 9th International Multisensory Research Forum (IMRF 2008). Hamburg, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C8B1-6
Abstract
Self-motion through an environment is a composite of signals such as vision and vestibular cues. Recently, it has been shown that visual-auditory cues and visual-haptic cues combine in a statistically optimal fashion. We asked what role does stereo vision play in optimal integration of visual and vestibular cues for linear heading. Participants performed the task in visual alone, vestibular alone or combined visual-vestibular (self-motion). The conditions were grouped into two experiments; bi-ocular, 2-D experiment and stereo, 3-D experiment. Participants were seated on a Stewart motion platform and presented with two motions consisting of a standard heading of straight ahead and a comparison heading and judged which movement was more to the right. From the responses individual JND were calculated (i.e., reliability measure). In the 2-D experiment 40 of participants’ self-motion reliability was worse than their most reliable unimodal cue, thus violating optimal cue combination. In the 3-D experiment all subjects self-motion reliability was not statistically different from the optimal predicted self-motion and therefore more reliable than either unimodal cue. These results can be evaluated with respect to a neuronal population model. These findings show that visual-vestibular cues combine in statistically optimal fashion with the caveat of stereo visuals.