de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Multisensory integration of non-visual sensory information for the perceptual estimation of walking speed

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83920

Frissen,  I
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84228

Souman,  JL
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83906

Ernst,  MO
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Frissen, I., Souman, J., & Ernst, M. (2008). Multisensory integration of non-visual sensory information for the perceptual estimation of walking speed. Poster presented at 9th International Multisensory Research Forum (IMRF 2008), Hamburg, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C871-5
Abstract
A variety of sources of sensory information (e.g., visual, inertial and proprioceptive) are available for the estimation of walking speed. However, little is known about how they are integrated. We present a series of experiments, using a 2-IFC walking speed judgment task, investigating the relative contributions of the inertial and proprioceptive information. We used a circular treadmill equipped with a motorized handlebar, to manipulate inertial and proprioceptive inputs independently. In one experiment we directly compared walking-in-place (WIP) and walking-through-space (WTS). We found that WIP is perceived as slower than WTS. The WIP condition creates a special conflict situation because the proprioceptive cue indicates motion whereas the inertial cue indicates an absence of motion through space. In another experiment we presented a range of conflicts by combining a single proprioceptive input with different inertial inputs. We found that the inertial input is weighted more heavily when it indicates a faster walking speed than proprioception. Conversely, it receives less weight if it indicates a lower speed. This suggests that the inertial cue becomes more reliable with increasing velocity. Our findings show a more important role for inertial information in the perception of walking speed than has previously been suggested in the literature.