Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Compressed Sensing and Bayesian Experimental Design

MPG-Autoren
/persons/resource/persons84205

Seeger,  MW
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84109

Nickisch,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ICML-2008-Seeger.pdf
(beliebiger Volltext), 382KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seeger, M., & Nickisch, H. (2008). Compressed Sensing and Bayesian Experimental Design. In W. Cohen, A. McCallum, & S. Roweis (Eds.), ICML '08: Proceedings of the 25th international conference on Machine (pp. 912-919). New York, NY, USA: ACM Press.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C839-3
Zusammenfassung
We relate compressed sensing (CS) with Bayesian experimental design and provide a novel efficient approximate method for the latter, based on expectation propagation.
In a large comparative study about linearly measuring natural images, we show that the simple standard heuristic of measuring wavelet coefficients top-down systematically
outperforms CS methods using random measurements; the sequential projection optimisation approach of (Ji amp;amp;amp; Carin, 2007) performs even worse. We also show that our
own approximate Bayesian method is able to learn measurement filters on full images efficiently which ouperform the wavelet heuristic. To our knowledge, ours is
the first successful attempt at "learning compressed sensing" for images of realistic size. In contrast to common CS methods, our framework is not restricted to sparse signals, but can
readily be applied to other notions of signal complexity or noise models. We give concrete ideas how our method can be scaled up to large signal representations.