de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Multispectral and SAR Images

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84133

Persello,  C
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bruzzone, L., & Persello, C. (2008). A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Multispectral and SAR Images. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008) (pp. II-265-II-268). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C835-B
Zusammenfassung
This paper presents a novel protocol for the accuracy assessment of thematic maps obtained by the classification of very high resolution images. As the thematic accuracy alone is not sufficient to adequately characterize the geometrical properties of classification maps, we propose a novel protocol that is based on the analysis of two families of indexes: (i) the traditional thematic accuracy indexes, and (ii) a set of geometric indexes that characterize different geometric properties of the objects recognized in the map. These indexes can be used in the training phase of a classifier for identifying the parameters values that optimize classification results on the basis of a multi-objective criterion. Experimental results obtained on Quickbird images show the effectiveness of the proposed protocol in selecting classification maps characterized by better tradeoff between thematic and geometric accuracy with respect to standard accuracy measures.