de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Combining Appearance and Motion for Human Action Classification in Videos

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83882

Dhillon,  PS
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84113

Nowozin,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84037

Lampert,  CH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Dhillon, P., Nowozin, S., & Lampert, C.(2008). Combining Appearance and Motion for Human Action Classification in Videos (174).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C7DD-E
Abstract
We study the question of activity classification in videos and present a novel approach for recognizing human action categories in videos by combining information from appearance and motion of human body parts. Our approach uses a tracking step which involves Particle Filtering and a local non - parametric clustering step. The motion information is provided by the trajectory of the cluster modes of a local set of particles. The statistical information about the particles of that cluster over a number of frames provides the appearance information. Later we use a “Bag ofWords” model to build one histogram per video sequence from the set of these robust appearance and motion descriptors. These histograms provide us characteristic information which helps us to discriminate among various human actions and thus classify them correctly. We tested our approach on the standard KTH and Weizmann human action datasets and the results were comparable to the state of the art. Additionally our approach is able to distinguish between activities that involve the motion of complete body from those in which only certain body parts move. In other words, our method discriminates well between activities with “gross motion” like running, jogging etc. and “local motion” like waving, boxing etc.