de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Smart MRI Agents Sensing Extracellular Calcium Fluctuations

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83784

Angelovski,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84074

Fousková P, Mamedov,  I
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84751

Canals,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Angelovski, G., Fousková P, Mamedov, I., Canals, S., Tóth, É., & Logothetis, N. (2008). Smart MRI Agents Sensing Extracellular Calcium Fluctuations. Poster presented at 2008 World Molecular Imaging Congress (WMIC), Nice, France.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C777-1
Abstract
Functional Magnetic Resonance Imaging (fMRI) is currently the main tool used for the study of function and dysfunction of the human brain. The current mainstay of fMRI, the so-called Blood-Oxygen-Level-Dependent (BOLD) contrast, capitalizes on the detection of changes in cerebral blood flow, volume and oxygenation, but cannot directly report neural activity, as it suffers from poor spatiotemporal resolution and specificity compared to the actual neural events. An alternative methodology could be that relying on the responsive, ‘smart’ contrast agents whose relaxivity depends on the concentration of substances directly related to neuronal activity. Ca2+ is an excellent marker closely linked to brain activation and is preferred target for various imaging methods. We report two Gd3+ chelates linked to a modified EGTA moiety that have a relaxivity response to extracellular Ca2+ fluctuations in the brain. The proton relaxivity of both Gd3+ complexes is sensitive to the variation of Ca2+ concentration. They are selective to Ca2+ with respect to the main competitor cation Mg2+. Upon interaction with Ca2+, the complexes exhibit high and reversible relaxivity changes; the relaxivity response of one complex upon addition of Ca2+ exceeds 80. Moreover, the relaxivity changes remain remarkable (>50) even in the medium mimicking the brain extracellular fluid, exhibiting a ~10 relaxivity change in the physiologically relevant Ca2+ concentration range (changes induced during the neural activity). These agents have great potential to be applied as functional MR markers and be used for the visualization of the neural processes. They can substantially increase the specificity and spatial resolution of the MR-detected signals and open new perspectives in fMRI.