Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

MPG-Autoren
/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
biological cy;

/persons/resource/persons83994

Jegelka,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
biological cy;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MPIK-TR-177.pdf
(Verlagsversion), 343KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sra, S., Jegelka, S., & Banerjee, A.(2008). Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering (177). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C75F-8
Zusammenfassung
The Euclidean K-means problem is fundamental to clustering and over the years it has been
intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10],
and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty
encountered by these clustering problems is the NP-Hardness of the associated optimization task,
and commonly used methods guarantee at most local optimality. Consequently, approximation algorithms
of varying degrees of sophistication have been developed, though largely for the basic Euclidean
K-means (or `1-norm K-median) problem. In this paper we present approximation algorithms for several
Bregman clustering problems by building upon the recent paper of Arthur and Vassilvitskii [5]. Our algorithms
obtain objective values within a factor O(logK) for Bregman k-means, Bregman co-clustering,
Bregman tensor clustering, and weighted kernel k-means. To our knowledge, except for some special
cases, approximation algorithms have not been considered for these general clustering problems. There
are several important implications of our work: (i) under the same assumptions as Ackermann et al. [1]
it yields a much faster algorithm (non-exponential in K, unlike [1]) for information-theoretic clustering,
(ii) it answers several open problems posed by [4], including generalizations to Bregman co-clustering,
and tensor clustering, (iii) it provides practical and easy to implement methods—in contrast to several
other common approximation approaches.