de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Receptive Fields without Spike-Triggering

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84066

Macke,  JH
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84793

Zeck,  G
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Macke, J., Zeck, G., & Bethge, M. (2008). Receptive Fields without Spike-Triggering. Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007, 969-976.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C753-F
Abstract
Stimulus selectivity of sensory neurons is often characterized by estimating their receptive field properties such as orientation selectivity. Receptive fields are usually derived from the mean (or covariance) of the spike-triggered stimulus ensemble. This approach treats each spike as an independent message but does not take into account that information might be conveyed through patterns of neural activity that are distributed across space or time. Can we find a concise description for the processing of a whole population of neurons analogous to the receptive field for single neurons? Here, we present a generalization of the linear receptive field which is not bound to be triggered on individual spikes but can be meaningfully linked to distributed response patterns. More precisely, we seek to identify those stimulus features and the corresponding patterns of neural activity that are most reliably coupled. We use an extension of reverse-correlation methods based on canonical correlation analysis. The resulting population receptive fields span the subspace of stimuli that is most informative about the population response. We evaluate our approach using both neuronal models and multi-electrode recordings from rabbit retinal ganglion cells. We show how the model can be extended to capture nonlinear stimulus-response relationships using kernel canonical correlation analysis, which makes it possible to test different coding mechanisms. Our technique can also be used to calculate receptive fields from multi-dimensional neural measurements such as those obtained from dynamic imaging methods.