de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning Perceptual Coupling for Motor Primitives

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84088

Mohler,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kober, J., Mohler, B., & Peters, J. (2008). Learning Perceptual Coupling for Motor Primitives. Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), 834-839.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C747-B
Zusammenfassung
Dynamic system-based motor primitives [1] have enabled robots to learn complex tasks ranging from Tennisswings to locomotion. However, to date there have been only few extensions which have incorporated perceptual coupling to variables of external focus, and, furthermore, these modifications have relied upon handcrafted solutions. Humans learn how to couple their movement primitives with external variables. Clearly, such a solution is needed in robotics. In this paper, we propose an augmented version of the dynamic systems motor primitives which incorporates perceptual coupling to an external variable. The resulting perceptually driven motor primitives include the previous primitives as a special case and can inherit some of their interesting properties. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. For doing so, we initialize the motor primitives in the traditional way by imitation learning without perceptual coupling. Subsequently, we improve the motor primitives using a novel reinforcement learning method which is particularly well-suited for motor primitives.