de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning Perceptual Coupling for Motor Primitives

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84088

Mohler,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kober, J., Mohler, B., & Peters, J. (2008). Learning Perceptual Coupling for Motor Primitives. Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), 834-839.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C747-B
Abstract
Dynamic system-based motor primitives [1] have enabled robots to learn complex tasks ranging from Tennisswings to locomotion. However, to date there have been only few extensions which have incorporated perceptual coupling to variables of external focus, and, furthermore, these modifications have relied upon handcrafted solutions. Humans learn how to couple their movement primitives with external variables. Clearly, such a solution is needed in robotics. In this paper, we propose an augmented version of the dynamic systems motor primitives which incorporates perceptual coupling to an external variable. The resulting perceptually driven motor primitives include the previous primitives as a special case and can inherit some of their interesting properties. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. For doing so, we initialize the motor primitives in the traditional way by imitation learning without perceptual coupling. Subsequently, we improve the motor primitives using a novel reinforcement learning method which is particularly well-suited for motor primitives.